Тема 9."Статистические распределения"
11.1 Распределение молекул по скоростям.Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v1 и v2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от ![]() где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид ![]() ![]() Распределение Максвелла достигает максимума при скорости Кривая распределения Максвелла позволит найти среднюю арифметическую скорость ![]()
С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается. 11.2 Закон распределения молекул идеального газа во внешнем силовом поле.При рассмотрении кинетической теории газов и закона распределения Максвелла предполагалось, что на молекулы газа не действуют никакие силы, за исключением ударов молекул. Поэтому, молекулы равномерно распределяются по всему сосуду. В действительности молекулы любого газа всегда находятся в поле тяготения Земли. Вследствие этого, каждая молекула массой m испытывает действие силы тяжести f =mg. ![]() Выделим горизонтальный элемент объема газа высотой dh и площадью основания S (рис. 11.2). Считаем газ однородным и температуру его постоянной. Число молекул в этом объеме равно произведению его объема dV=Sdh на число молекул ![]() Действие веса dF вызывает давление, равное
минус - т.к. при увеличении dh давление уменьшается. Согласно основному уравнению молекулярно-кинетической теории
Приравнивая правые части (11.2) и (11.3), получаем ![]() ![]() Интегрируя это выражение в пределах от ![]() ![]() Потенцируя полученное выражение, находим
Показатель степени при exp имеет множитель ![]() Тогда уравнение для концентрации молекул преобразуется к виду
Это уравнение отображает общий закон Больцмана и дает распределение числа частиц в зависимости от их потенциальной энергии. Он применим к любой системе частиц, находящихся в силовом поле, например в электрическом. 11.3. Распределение давления по высоте.Если учесть, что Р=nkT, то нетрудно получить следующее уравнение
где ![]()
Это выражение называется барометрической формулой. Из полученных уравнений следует, что как концентрация молекул, так и давление уменьшаются с высотой по экспоненциальному закону. 11.4. Среднее число столкновений и средняя длина свободного пробега молекул.Средние скорости молекул, газа очень велики - порядка сотен метров в секунду при обычных условиях. Однако процесс выравнивая неоднородности в газе вследствие молекулярного движения протекает весьма медленно. Это объясняется тем, что молекулы при перемещении испытывают соударения с другими молекулами. При каждом соударении скорость молекулы изменяется по величине и направлению. Вследствие этого, скорость, с которой молекула диффундирует из одной части газа в другую, значительно меньше средней скорости молекулярного движения. Для оценки скорости движения молекул вводится понятие средней длины свободного пробега. Таким образом, средняя дли свободного пробега Для определения ![]() Молекулы, с которыми соударяется выбранная молекула, в первом приближении считаем неподвижными и принимаем их за сферические тела радиуса r. Пусть выбранная молекула движется вправо из положения ![]() Если концентрация молекул n , то внутри рассмотренного цилиндра находится число молекул, равное ![]() Это число Предположение о том, что все молекулы, кроме одной, неподвижны, является, конечно не верным. В действительности все молекулы движутся, и возможность соударения двух частиц зависит от их относительной скорости. Поэтому вместо среднеарифметической скорости
Средний путь, проходимый молекулой за единицу времени, численно равен
Таким образом, средняя длина свободного пробега
|